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We explore the use of multimodal input to predict the landing position of a ray pointer while selecting targets
in a Virtual Reality (VR) environment. We first extend a prior 2D Kinematic Template Matching technique
to include head movements. This new technique, Head-Coupled Kinematic Template Matching, was found
to improve upon the existing 2D approach, with an angular error of 10.0◦ when a user was 40% of the way
through their movement. We then investigate two additional models that incorporated eye gaze, which were
both found to further improve the predicted landing positions. The first model, Gaze-Coupled Kinematic
Template Matching, resulted in angular error of 6.8◦ for reciprocal target layouts and 9.1◦ for random target
layouts, when a user was 40% of the way through their movement. The second model, Hybrid Kinematic
Template Matching, resulted in angular error of 5.2◦ for reciprocal target layouts and 7.2◦ for random target
layouts when a user was 40% of the way through their movement. We also found that using just the current
gaze location resulted in sufficient predictions in many conditions. We reflect on our results by discussing the
broader implications of utilizing multimodal input to inform selection predictions in VR.
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1 Introduction
The usage and popularity of Virtual Reality (VR) technologies has increased greatly over the
last decade. Ray pointing is typically used within VR environments to facilitate target selection
[26]. However, controlling a virtual ray with a handheld controller can be difficult, especially for
small and distant targets [69]. Selection could potentially be improved if VR systems could predict
a user’s intended target, while a selection action is in its initial stages.

In 2D environments, many endpoint prediction models have been developed to facilitate target
selection tasks [66, 87, 94, 114]. With such models, a cursor’s trajectory is continuously analyzed as
it moves toward an intended target, so that the model can predict where the final endpoint of the
trajectory will be. One promising technique, Kinematic Template Matching (KTM), matched
cursor velocity profiles to a library of templates from known movements to predict a trajectory’s
endpoint in 2D space [87]. Despite the promise of such 2D techniques, they have yet to be applied
to 3D VR environments. Thus, within this research, we extended KTM into 3D space by harnessing
the additional multimodal channels that are inherent to VR hardware configurations: 6 df tracking
of the handheld controller and Head-Mounted Display (HMD), and real-time eye gaze1 that
emerging HMDs can measure [1, 3]. By leveraging these additional multimodal input streams, we
sought to predict a user’s selection intention.

In this article, we explore enhanced endpoint prediction models for ray pointing during target
selection in VR, that build upon KTM. Most notably, KTM leverages only the 2D cursor movements
to predict a landing position. Our key insight is that additional multimodal channels can be
integrated into the template matching procedure to improve prediction results. Our first model,
Head-Coupled Kinematic Template Matching (HeadKTM7), compared the velocity profiles
of the controller and head (via their HMD) to past historical data (i.e., templates) to predict the
final landing position of the ray pointer. A data collection study found that the model’s predictions
were within 10.0◦ of the true landing position 40% of the way through a target selection movement,
and within 3.4◦ 90% of the way through a movement. At the 40% mark (302 ms, on average), this
improved prediction accuracy by 44.1% compared to a direct extension of KTM that only used hand
movement. This model and the associated findings have been previously published in our own
prior work [52].

An important observation from this study was that one’s head provided an early indication
of their intended movement direction, but it was rarely oriented directly toward the final target
position. As such, we hypothesized that the eye gaze might be able to provide a more accurate
indication of the final landing position of the cursor, since users are more likely to look directly at
targets prior to selection [101]. While past research has explored the coordination of gaze and head
movements in mixed reality [98, 108], no known research has looked at such patterns within the
context of ray pointing.

1The term gaze has been used to refer to movements of the eye and the head. As with prior research, we use the term gaze
for eye movements [99], and refer to movements of the head as head movements.
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Thus, we then build upon our prior work [52], and investigate the coordination patterns between
gaze, head, and controller movements, during target acquisition in VR, through a follow-up study.
This study also varied the layout of the next target location to understand how task context impacted
model performance. A detailed analysis of the movement metrics reiterates findings from prior
work; gaze can provide a stronger indication of the final landing position than the Head Angle
(HA). We then explore two model variations: Gaze-Coupled Kinematic Template Matching
(GazeKTM7) which integrated gaze into the templates, and Hybrid-Gaze Kinematic Template
Matching (HybridKTM7), which alternated between using (a) KTM predictions prior to a saccade
occurring and (b) using the raw gaze location after a saccade occurred. Compared to HeadKTM7,
GazeKTM7 enhanced predicted landing positions by 8.9% for reciprocal target layouts and by 19.8%
for random target layouts, with angular errors of 6.8◦ and 9.1◦, respectively, when participants
were 40% of the way through their selection movements (356 ms, on average). Compared to
HeadKTM7, the second model, HybridKTM7, demonstrated a 29.3% improvement for reciprocal
target layouts and a 37.2% improvement for random target layouts, with angular errors of 5.2◦ and
7.2◦, respectively, at 40% progress. Furthermore, we found that simply using the raw gaze position
(GazeOnly) outperformed both models with an average angular error of 4.1◦ for random target
layouts and 3.8◦ for reciprocal target layouts at 40% progress; however, it was less accurate prior to
40% progress. For reciprocal target layouts, the hybrid model (HybridKTM7) was best overall, while
for random target layouts, the raw gaze position (GazeOnly) provided the best estimate throughout
the entire selection process.

In Section 8, we discuss considerations related to the practical applications of our work. In
particular, our work, and endpoint prediction more generally, has important implications toward
the design of target facilitation techniques. For example, adaptive control gain techniques [23]
could bias pointer movements toward predicted landing positions. Alternatively, techniques that
leverage target snapping [106, 109], or cursor bending [86, 102], could be enhanced by biasing
toward targets within the predicted endpoint region. Endpoint prediction in VR could also be used
as a mechanism to reduce perceived activation latency, by inferring next actions before they occur
[110]. Finally, in Section 9, we discuss limitations of our work and areas for future research. In
summary, the contributions of this work are:

(1) The adaptation of a KTM endpoint prediction technique to VR environments.
(2) A HeadKTM7 technique that integrated velocity data from the controller and head into the

predictive model.
(3) Two gaze-based KTM techniques (GazeKTM7, HybridKTM7) that integrated gaze data into

the predictive model.
(4) Three controlled empirical studies showing that these models can outperform more direct

adaptations of prior approaches while predicting ray pointer landing positions.
(5) A discussion of the practical implications of our work and implementation considerations

for endpoint prediction in real-world VR applications.

2 Literature Review
The present research extends prior work on 2D cursor prediction to VR environments, so we first
review related research in the areas of VR selection techniques and cursor endpoint prediction mod-
els. We then discuss related work that utilizes gaze and head movements for input and interaction.

2.1 VR Selection Techniques
One of the primary interactive operations within VR is object selection, which enables the manipu-
lation of remote objects [26]. In the last several decades, numerous techniques have been developed
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to enable and facilitate object selection in VR environments. A full review of such techniques is
beyond our scope, and we direct the reader to Argelaguet and Andujar [9] for a comprehensive
survey. Most critically, early research [26] identified two main classes of selection techniques, i.e.,
virtual hand (i.e., 3D cursors, arm-extension) [40, 43, 53, 76, 92, 113] and ray pointing or casting
[26, 40, 69, 91]. With virtual hand techniques, a 3D cursor is directly controlled by the position of
the user’s hand. With ray pointing, a cursor emanates from one’s hand or a 6 df handheld controller
like a laser pointer. Within each of these classes of techniques, numerous variations and facilitation
methods have been developed. For example, 3D cursors can be enhanced with nonlinear mappings to
facilitate distant target selection [92], or with dynamically sized activation areas to facilitate the se-
lection of small targets [106]. Similarly, there have been many adaptations developed for ray casting
techniques, which are formally classified in the survey by Argelaguet and Andujar [9]. In our work,
we focus on ray pointing for several reasons. First, ray-based approaches have been shown to be
more efficient for selection across several different studies [9, 45]. Second, ray pointing has become
an industry standard for object selection within most commercial VR systems. Finally, ray pointing
better enables distant-target selection, whereas virtual hand techniques are typically limited to the
interaction of objects within arm’s reach [9, 26]. In fact, ray pointing has become not only a common
technique in VR, but is also used when selecting distant targets on large displays [58, 62, 79].

One drawback of ray pointing is that it can be difficult to select small and distant targets due to
the angular accuracy needed. Several techniques have been developed to improve ray pointing by
decreasing the required level of pointing precision. For example, early work used a conical area for
the ray [69]. Several other approaches have been considered in the literature, such as snapping to
the closest target [102, 109], bending around obstacle targets [86], or increasing the ray’s activation
area using bubble selection mechanisms [71]. A drawback of these techniques is that they can cause
ambiguity if multiple targets are in the selection region. As such, techniques have been developed
to disambiguate selection intent. Examples include: providing a controllable depth cursor along the
ray [15, 45], leveraging the user’s gaze to infer the target depth [30], or supporting progressive
refinement techniques to break down the selection into multiple stages [45, 63]. However, the
literature lacks techniques to predict the landing position of a ray pointer while it’s still in motion,
which could further enhance the selection process.

2.2 Cursor Endpoint Prediction and Distribution Models
Existing research has explored endpoint prediction techniques, which predict where a cursor will land
while a pointing movement is in progress. The motivation for such techniques is to enable pointing
facilitation, such as target expansion [73], which depend on the ability to predict the endpoint of an
input gesture. Several approaches have been proposed to perform endpoint prediction, as described
below.

With regression-based extrapolation, existing models of cursor movements were used to predict
the location of a distant target based on partial movements [10]. Most successful was the motion
kinematics approach by Lank et al. [66], which they subsequently improved to consider the stability
of the prediction [94]. An alternative approach is to use target classification, which integrates
knowledge about targets in the environment to identify the most probable candidate target [78].
Recent work used neural networks and Kalman filters to predict user intent based on the kinematics
of the cursor [11, 21].

Related to these approaches are models based on Optimal Feedback Control (OFC) from
motor control theory [105]. In such models, the human is represented as a dynamic system which
is continuously observing sensory movements and determining optimal control actions such as
reaching or pointing. Such models are related to our work as they can provide predictions of
motion trajectories and endpoints during early stages of a motion [68]. Indeed, the use of such
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models has become an active area in Human–Computer Interaction (HCI) recently [36, 39,
42]. For example, Fischer et al. examine how OFC can be used to understand 2D mouse pointing
behaviors [39]. Their work demonstrates that the OFC models can be used to predict and explain
the entire movement trajectory of a mouse pointer. Bachynskyi and Müller further showed the
application of OFC to model mid-air movements used in VR and AR interfaces [12]; however,
the model requires knowledge of the end target position. That said, OFC models can be used to
reverse-engineer the human’s objective function (i.e., desired endpoint) using inverse optimal
control. For example, Ziebart et al. assigned probabilities to targets using inverse optimal control
and Bayes’ rule for target prediction [114]. While such techniques are promising, they are complex
and require knowledge of the target locations. A formal comparison to OFC approaches was out of
scope for our work, but we discuss possible implications to ray pointing prediction in Section 9.5.

A final approach is KTM [87]. With this technique, the velocity profile of a partial pointing
movement is compared to a library of known “template” movements to predict the final cursor
position. The technique compares a user’s movement to the user’s own template library. This allows
results to be personalized to each individual’s pointing behaviors, at the cost of requiring individual
data collection. To predict the candidate movement’s final endpoint, the technique uses the travel
distance associated with the best matched template and applies that distance to the current direction
of the candidate’s movement from the original start point. It was found that on average, KTM
predicts the endpoint location within 83 pixels of the true endpoint when 50% of the movement
has been completed, 48 pixels at 75%, and 39 pixels at 90%. This performance was better than prior
kinematic endpoint prediction methods [66]. Although untested, the authors suggested that this
prediction could then be combined with target selection techniques such as target expansion [73]
or gravity wells [23]. Template matching offers several advantages over the other techniques, i.e., it
is target-agnostic, user-adaptable, and easy to implement [87]. As such, this work builds upon this
approach, and we refer the reader to this prior work for its implementation details [87].

Target prediction has also been leveraged beyond desktop configurations. In touch-based inter-
faces, it has been used to reduce perceived latency [28, 81, 82]. For example, Xia et al. leveraged
hover information to predict when and where a touch would occur [110]. Ahmad et al. applied
similar predictive models for in-car, mid-air selection [5]. Despite the promise of these techniques,
we are unaware of work that applies prediction models to VR ray pointing, to predict selection
intent.

In addition to endpoint prediction models, there have been several efforts to model endpoint
distributions during 2D [17, 18, 19, 61] and 3D [108, 111] target acquisition tasks. An early example
for touch devices includes the work by Bi and Zhai which modeled touch points as a dual Gaussian
distribution and considered the target with the shortest “Bayesian touch Distance” from a touch
point as the desired target [18]. Follow-up work has provided similar Gaussian assumption-based
models to improve selection of 2D moving targets [46]. In the realm of 3D environments, Yu et al.
offered a model (EDModel) of endpoint distributions of a ray pointer during 3D target acquisition
in VR environments [111]. Similarly, Wei et al. modeled the endpoint distributions of the head
and gaze vectors during gaze-pointing in AR environments [108]. These models have all been
shown to improve pointing accuracy by correcting the final endpoint once targeting motion has
been completed. In contrast, our work (and endpoint prediction more broadly) seeks to predict the
endpoint of a target acquisition movement while the movement is still in progress.

2.3 Understanding and Utilizing Gaze and Head Movements for Input and Interaction
The use of eye movements for input in VR environments was proposed by Tanriverdi and Jacob
[104] and a design space for such interactions has been recently developed [54]. For goal-directed
movements, it is understood that hand movements are preceded by eye movements that guide the
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hands toward the object of interest [65, 101]. Within the domain of physical interaction, Helsen et al.
investigated the coordination of the hand and point of gaze while aiming [48–50] and found that
the point of gaze arrived on a target prior to the hand at approximately 50% of the response time.
The coordination of eye and pointer movements has also been investigated during desktop-based
tasks such as tracing [35], visual search and selection [20], Web search [31, 56], and real-world
PC use [70], and while using multitouch surfaces [88, 89]. Researchers have begun to explore the
coordination of eye, pointer, and head movements in VR environments [96, 98, 100], but have not
yet explored gaze behaviors during ray pointing selection in VR.

Gaze has often been used as an input modality for target acquisition [24, 37, 38, 80, 103, 107, 112].
For example, Zhai et al. proposed Manual and Gaze Input Cascaded Pointing [112], where a cursor
jumped to a user’s gaze location and could then be refined with mouse movements while using a
desktop. Most relevant to our own work is the use of gaze for pointing in VR environments. Early
work demonstrated mixed results when using gaze-based pointing rather than hand-based pointing
[33, 84, 104]. In fact, a study by Qian and Teather showed that utilizing head movements instead of
eye movements provided better selection performance [93]. Recent work has proposed to, instead,
combine gaze with hand and head-based input in VR [57, 64, 90]. For example, Sidenmark and
Gellersen explored a set of selection techniques that utilized the relationship between eye and
head movements, resulting in improved control and flexibility [97]. This past work reveals that
even though multimodal channels, such as gaze, may be less accurate or more noisy than handheld
controllers, they can still be leveraged to improve selection. In our work, we utilize gaze and head
movements to predict where a user intends to point, in contrast to the above techniques, which
used such modalities to facilitate final selection operations.

There have been prior efforts to utilize gaze and head movements to predict a user’s intent.
Example uses include: intent recognition during object manipulation on tabletop displays [13] and
target prediction for desktop selection [22]. In the realm of VR HMDs, Casallas et al. used relative
head-target and hand-target features to predict intended moving targets [27], Arabadzhiyska et al.
used gaze patterns to predict saccade endpoints to aid with foveated rendering [8], Mardenbegi
et al. investigated the use of gaze, coupled with head movements to predict the depth of targets to
resolve targeting ambiguities [72], and David-John et al. used gaze dynamics to predict when a user
intends to interact in VR [34].

Most relevant to our own work, Cheng et al. used gaze and hand movements to predict intended
targets in VR [32]; however, their work focused on direct hand manipulations. Their algorithm
used the point of gaze as the prediction at the instant that a hand movement began. It is unknown
how reliable this method is, especially given that fixations do not always occur while reaching [96].
Furthermore, this approach was developed for direct manipulation, whereas we wish to apply
such a technique to remote target acquisition using ray pointing. Finally, recent work by Wei et al.
examined eye and head endpoint distributions during gaze-based pointing [108]. Their analysis
was used to build predictive models and improved pointing accuracy of gaze-based selection. We
aim to use a complementary approach to improve the prediction accuracy for ray-based selection.

In summary, prior predictive techniques have demonstrated the use of naturally occurring gaze
and head movement data. However, they did not focus on detailed behaviors of gaze and head
movements during ray pointing in VR. Our work contributes findings that provide such behaviors
and inform our multimodal ray pointing prediction models.

3 HeadKTM7

In this section, we describe our HeadKTM7 model, which leverages the head movements of the user
to predict the final controller location and direction while the pointer movement is still in progress.
To adapt the KTM approach [87] for ray pointing in VR environments, we considered the traditional

ACM Transactions on Computer-Human Interaction, Vol. 32, No. 1, Article 3. Publication date: April 2025.



An Investigation of Multimodal KTM for Ray Pointing Prediction 3:7

ray pointer to be a virtual laser pointer that had 5 df, i.e., the origin (X, Y, Z ) and direction (\ℎ, \E)
of the ray. Our head-coupled model adapted and extended the KTM technique as follows:

(1) The KTM method was built for 2D cursor pointing, predicting the (X, Y ) coordinates of the
movement’s endpoint. To adapt the technique for 3D ray pointing, we are not predicting
an “endpoint” per se, rather the final landing position of a ray. Thus, estimates of not only
the 3D coordinates of the handheld controller but also the angle at which the ray is being
emitted are needed.

(2) The KTM method only considers the velocity profiles of the cursor in the template matching
procedure. Thus, a cursor’s velocity profile across targets with different distances may not
be distinguishable in the first part of its movement [41, 60]. We extend this method to also
consider the user’s head movement, hypothesizing that this additional channel may increase
prediction accuracy. In total, four velocity profiles are considered: the positional and angular
velocities of the controller and head. Their relative importance are weighted by parameters
(a, b, c, and d). We call this head-coupled variation HeadKTM.

(3) The KTM method selects one, best matching template, to estimate the endpoint distance. We
extend the method to a top-n approach, where the weighted average of multiple matching
templates may be used. This may compensate for when the top match may not be as accurate.
We call this top-n variation KTM= .

These enhancements were the backbone of our HeadKTM= technique, where n represents the
number of matching templates which are used. The technique is target-agnostic and can be per-
sonalized to individual users. The approach follows the same general approach as KTM, described
below.The tuning process for the model parameters (a, b, c, d, and n) is described later in Section 4.6.

3.1 Step 1. Building the Template Library
The template library is built by capturing selection movements for known targets, considering both
the motion of the handheld controller and the head during selection. Because these are spatial input
channels, both the location and the angle of the controller and head (via HMD) are considered
(Figure 1(a)). As such, each template consists of four velocity profiles (Figure 1(b)):

—Controller Positional (CP) velocity—the change in the controller’s (X, Y, Z ) coordinates in
millimeters per second.

—Controller Angular (CA) velocity—the change in angle of the controller’s forward vector in
degrees per second.

—Head Positional (HP) velocity—the change in the head’s (X, Y, Z ) coordinates in millimeters
per second.

—HA velocity—the change in angle of the head’s forward vector in degrees per second.

In the previous KTM technique, the template library cropped any backtracking movements from
a template (e.g., for movements that overshoot their intended target) [87]. Our initial testing found
that adequate results were achieved without this step. Unlike KTM, it was necessary to smooth the
templates due to the noise introduced by the controllers. A Gaussian smoothing operation was
performed on each velocity using a 5-point window (f = 1.66). The profiles were then resampled
to 20 Hz in preparation for comparison to subsequent candidate movements.

3.2 Step 2. Preprocessing Candidate Pointing Movements
As a new candidate movement is captured, the position and angle values of the handheld controller
and head were used to create the four partial velocity profiles. They were smoothed using a 5-point
Gaussian window (f = 1.66) and resampled to 20 Hz as each new point was collected. As with
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Fig. 1. (a) During a ray pointing movement, both the head and controller change in position and angle.
(b) Each template consists of four velocity profiles: CP velocity, CA velocity, HP velocity, and HA velocity.

KTM, each velocity profile in the template library that had a longer duration than the candidate
movement was truncated to the candidate movement’s length.

3.3 Step 3. Matching Candidate Movements
The candidate movement, C, was then compared to each template, T 8 , at the arrival of each new
data point using the cumulative scoring function from KTM [87], which averages the difference
between the velocity values at each timestamp. The scoring calculation was repeated for each of the
four velocity profiles, resulting in four scores (i.e., S�% , S��, S�% , and S��). The final cumulative
scoring function, ( ()8 ), was a weighted sum of the four individual scores, where a, b, c, and d
were tuning parameters (Equation (1)). Note that by setting a, c, and d to 0, the model would be
analogous to the KTM model and only use the velocity profile of the CA:

( ()8 ) = 0(�% ()8 ) + 1(�� ()8 ) + 2(�% ()8 ) + 3(�� ()8 ). (1)

3.4 Step 4. Calculating the Expected Landing Position
To predict the landing position, the n-best template matches are considered, which are ranked
by the minimum values of ( ()8 ). To calculate the expected final movement angle distance of the
ray, a weighted average of the movement angle distances of the top-n templates is computed. The
template’s weight, w8 , is defined as the reciprocal of ( ()8 ), and the template’s movement angle
distance is d8 . Using these values, the weighted average angular distance is calculated by

` =

∑=
8=1 (F8 ∗ 38 )∑=

8=1F8

. (2)

The controller’s initial angle is rotated by `, along the current angle of motion (as defined by the
angle between the current controller’s forward vector and the initial controller’s forward vector).
The same approach was used to calculate the expected CP. Using the weighted average of the top-n
template’s controller distances, the magnitude of this average is added to the initial controller’s
position along the current direction of movement. By combining the expected angle and position,
the final ray pointer landing position is calculated (Figure 2).

4 Experiment 1: Understanding the Coordination of Head and Controller Movement
Our evaluation of HeadKTM was divided into two separate experiments. This first experiment
gathered initial data to better understand human head and controller behaviors during ray pointing
using controlled target sizes and distances. The experiment consisted of a pointing task in a VR
environment, using a ray pointer, without prediction enabled. This first experiment was also used
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Fig. 2. To predict the final landing position, the predictions for the final angle and position of the controller
were combined.

to determine the parameters for the model, while the second experiment, presented in Section 5,
evaluated the effectiveness of the model compared to baseline approaches.

4.1 Participants
Seventeen participants (11 female), with no major motor impairments and normal or corrected-
to-normal vision (only contact lenses were allowed) were recruited. They ranged in age from 18 to
26 (M = 21 years, SD = 2 years). Participants were compensated $30 CAD for their time. A Randot
Stereo Optical Test was administered prior to the experiment to ensure adequate stereo vision.
All participants were right-handed and operated the controller with their right hand. Informed
consent was obtained prior to the study.

4.2 Apparatus
The experiment was conducted using an Oculus Rift CV1 HMD, with a resolution of 2,160 × 1,200,
using a single Oculus Touch handheld controller for input. The Index Trigger button was used for
selection.The position and angle of the HMD and controller were tracked using Oculus Constellation
Sensors.The system ran on a 3.7 GHz Intel Core i7-8700k desktop computer with anNVIDIAGeForce
RTX2080 graphics card and was developed in Unity3D. The HMD display updated at a frequency
of 90 Hz, and both the HMD and CPs and CAs were updated at a rate of 90 Hz. The handheld
controller manipulated a ray pointer using an absolute mapping, with the ray originating from the
tip of the controller, aligned with the z-axis of the local handheld controller coordinate system.

4.3 Procedure
The task was a reciprocal 3D pointing task, wherein participants pointed back and forth, in suc-
cession, between a start and end target (Figure 3). No distractor targets were included. The target
to be selected was a yellow sphere, and the other target was a semi-transparent gray sphere. The
background of the scene was a gray gradient. In the VR environment, participants stood on an
elevated platform above an infinite grid ground plane. The target to be selected turned green when
it was intersected by the ray to indicate that the target could be selected. Upon successful selection,
the targets swapped colors. If the ray did not intersect the target to be selected when a button-click
occurred, the trial was counted as an error, and the participant kept trying to select it until they
were successful.

Participants were asked to complete the task as quickly as possible, without exceeding an error
rate of 4%.The error rate was displayed after each block of trials. During the study, participants stood
on a marked floor position and were told not to move their feet. The software and the experimenter
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Fig. 3. First-person view of the study environment.

Fig. 4. The target layout. (a) Reciprocal targets were on opposite sides of the z-axis at varying depths. (b)
Targets appeared at one of eight angles with equal angular widths.

ensured their feet were in the proper position prior to each trial. The coordinate system was
calibrated after the participant stood on a marked spot prior to the study. The experimenter could
recalibrate at any time during the study. The point between the eyes was the origin, with the
positive axes being left to right (X ), bottom to top (Y ), and back to front (Z ). Participants performed
approximately 2 minutes of practice trials to become familiar with the task.

4.4 Design
A repeated-measures, within-participant design was used. The position of the goal target varied
based on three independent variables—Depth (3 m, 6 m, 9 m), Theta (25◦, 50◦, 75◦), and Position
(0◦–315◦ at 45◦ increments) (Figure 4). Depth manipulated the distance between the target center
and the origin. Theta changed the magnitude of the angle between the vectors that was generated
by connecting each target to the origin, with the center vector of these two vectors laying along
the Z -axis. For each combination of Theta and Depth, there was a ring of target locations (i.e.,
Position) evenly distributed at 45◦ increments (Figure 4(a)). During each reciprocal task, targets
were placed in opposite locations of the ring, but their depth values could vary (Figure 4(b)). A
target’s size was determined by its angular width, W (4.5◦, 9.0◦), relative to the origin. With W
fixed, the further the targets were, the larger their radius; however, the angle needed to place the
ray within its boundaries remained fixed. During each reciprocal task, the angular width of both
targets was equal (Figure 4(b)).

The study had 54 blocks for each of the 54 possible combinations ofDepth (start target),Depth (end
target), Theta, and W in random order. For each block, four sets of reciprocal trials were performed
for the eight Positions (i.e., four pairs), and consisted of nine selections (i.e., eight reciprocal
selections between the two targets at opposite positions). This resulted in 54 × 4 × 8 = 1,728 trials
per participant. The experiment was completed in 60 minutes and participants were encouraged to
take breaks between blocks to prevent fatigue.
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Fig. 5. The HA and CA distance traveled, with respect to Theta.

4.5 Results
Prior to the analysis, outliers were removed (i.e., trials where the duration was longer than 2
SDs of trials with the same Theta and W ; 6% of the data). Trials where errors occurred (1.7%)
were only analyzed up to the end of the first selection attempt. We focus our analysis on the
angular movements of the head and controller: the angular distance traveled, and their velocity
profiles throughout the movement, since ray pointing is best described as a function of the angular
amplitude of movement [62]. An repeated measures analysis of variance (RM-ANOVA) was
used for statistical analysis. Error bars in all graphs in this article represent 95% CIs.

4.5.1 HA and CA Distance Traveled. We first look at the main effect that each independent
variable had on the angular distance traveled of both the head and controller (Figure 5). This is
calculated by looking at the cumulative angular distance between each sample within a trial. The
angle between targets, Theta, had a significant effect on the angular distance traveled for both
the head (F2, 32 = 272.4, p < .0001) and controller (F2, 32 = 116,673, p < .0001). For the controller,
this is intuitive, as the angular distance must be traversed to reach the target. The Width was also
found to have a significant effect for both the head (F1, 16 = 79.1, p < .0001) and controller (F1, 16 =
18.2, p < .005). Interestingly, the distance traveled by the head increased as the Width decreased,
likely because participants tried to see the smaller targets better. The Position also had a significant
effect for both head (F7, 112 = 110.1, p < .0001) and controller (F7, 112 = 7.6, p < .0001). Depth had
a significant effect for controller (F2, 32 = 17.9, p < .0001), but not for head (p = .07). Overall, the
results show that the main factors of targeting will influence the trajectories of both the controller
and head movements, indicating promise for using both channels in a template matching model.

To perform a statistical comparison of angular distance between head and controller, an additional
variable, Modality, was introduced in our analysis. The head moved only a fraction of the angle
that the controller moved (F1, 16 = 422.0, p < .0001), and there was significant interaction between
Modality and Theta (F2, 32 = 48.9, p < .0001). This is intuitive because the CA must move within the
bounds of the target, while the head must only move so that the target is in the participant’s field
of view. Figure 6 illustrates a scatterplot of the final focal point of the Head and Controller, when
each target was acquired. The controller focus (blue) was within the bounds of the target, while the
head (orange) only traveled a fraction of the distance, with observable variation between trials.

4.5.2 Head and Controller Velocity Profiles. We also evaluated how the velocity profile templates
differed across movement angles. To generate “representative” velocity profiles, the velocity profiles
were resampled to 20 Hz, and the average velocity at each interval was computed (Figure 7). Con-
sistent with prior findings [41, 60], the velocity profiles for the controller were not distinguishable
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Fig. 6. A scatterplot of the final controller (blue) and head (orange) locations, for each position. Points are the
intersection of each ray with a vertical plane centered at the target location. The controller focus (blue) was
within the target’s bounds, while the head only traveled a fraction of the required distance, with observable
variation between trials.
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Fig. 7. Representative angular velocity profiles for the controller (left) and head (right) by movement angle.
The highlighted regions illustrate that in the first 150 ms of movement, profiles only diverge for the head, not
the controller.

during the initial stage of movement across the three movement angles. However, the velocity
profiles for the head diverged immediately. This suggested incorporating head movements within a
predictive model may allow for earlier predictions.

4.6 Model Parameters and Performance
To analyze the performance of our model and tune its parameters, intra-participant template
libraries were created from each participant’s trials. Each movement was compared against the
other templates in the participant’s template library. Angular error was used to calculate the
accuracy of individual predictions, defined as the angular distance between the predicted ray and
the ray from the predicted controller origin through the center of the intended target. This angular
error informed the precision of the model, and was chosen, as it provides a single representative
metric of accuracy, analogous to the pixel distance used to evaluate 2D endpoint prediction models.
We discuss additional metrics of precision in our future work section.

The model had two main factors to tune: the weights in the scoring algorithm for the four velocity
profiles (Equation (1)) and how many templates to use in the top-n matching algorithm (Equation
(2)). To determine n for the top-n matching templates, four equally weighted components were
used (i.e., a, b, c, d = 1), and the cumulative accuracies of all trials for all participants and different
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Fig. 8. The angular error of the prediction derived from each input channel at various stages of the movement.

values of n were calculated. Results improved gradually from n = 1 to 4, whereas n = 4 to 10 were
similar, with n = 7 providing the best result, which is the value used for our implementation.

To determine the best weighting values for the scoring function (i.e., a, b, c, and d in Equation (1)),
various values were used to try and optimize the model’s accuracy at 40% of the movement progress
(thus prioritizing early prediction). For context, the mean movement time across all trials was
754 ms, so a prediction at 40% progress would occur roughly 302 ms after a movement begins on
average; however, this would be dependent on Theta. An RM-ANOVA was performed to compare
the angular error of the four models, that exclusively used one of the four respective velocity
profiles, at 10% intervals of progress points (Figure 8). The model had a significant effect on the
angular error (F3, 48 = 4.5, p < .01), as did the progress point (F9, 144 = 92.1, p < .001). There was
also a significant interaction effect between model and progress point (F27, 432 = 120.7, p < .001).
The data in Figure 8 suggest that the HA may provide a better indicator for the first half of the
movement, while the CA may be a more accurate predictor toward the end of a movement. This
may be due to the velocity profiles of the head being more distinguishable in the first phase
of movement (Figure 7). By considering the relative performance of each input channel, setting
the best at 1 and worst at .5, and interpolating the remaining two values, we derived values of
a = .95 (CP), b = .5 (CA), c = .86 (HP), and d = 1 (HA) and average accuracies of 6.4◦, 3.3◦, and 2.3◦
at 50%, 70%, and 90% of the way through the task, respectively. We call this model HeadKTM7, for
“Head-Coupled KTM” with n = 7.

5 Experiment 2: Validation of HeadKTM7

This second experiment was conducted to further validate the model and compare it to baseline
approaches. Experiment 1 only examined three movement angles, whereas this second experiment
evaluated the robustness of the model against a continuous range of angles, depths, positions, and
widths.

5.1 Participants
A total of 12 participants (9 female) completed Experiment 2 and were recruited from the pool of
17 participants from Experiment 1. Participants were compensated $30 CAD. Informed consent
was obtained prior to the study.
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5.2 Apparatus and Procedure
The same apparatus and procedure used in Experiment 1 was used in Experiment 2.

5.3 Design
An repeated-measures within-participant design was used. As with the first experiment, the task
was a reciprocal 3D pointing task with no distractor targets. The only controlled variable wasTheta,
which used all angles from 15◦ to 85◦, at 1◦ intervals. All other task variables were randomized.
The Depth of both targets ranged continuously from 3 m to 9 m, Position ranged from 0◦ to 359◦,
and Width ranged from 4.5◦ to 9.0◦. The experiment took approximately 60 minutes, with each
angle of Theta repeated seven times in random order. To prevent fatigue and to allow breaks,
the experiment was divided into 50 blocks, with each block presenting 7 pairs of targets with
randomized Theta values (thus requiring 6 reciprocal selections). This resulted in 50 × 7 × 6 = 2,100
trials per participant. Before each session, participants were given practice trials, lasting about 2
minutes, to familiarize themselves with the task.

5.4 Analysis
All trials were analyzed; however, trials where errors occurred (2.7%) were only analyzed up until
the first selection was attempted. HeadKTM7 was compared to a direct adaptation of the KTM
model. Because these two models vary in two ways (use of head-coupling, and averaging of top
seven templates), we also performed a comparison to KTM7 (KTM,= = 7) and HeadKTM (KTM, with
head coupling), to understand the benefit of these two variations. As in prior endpoint prediction
work [114], the results were also compared to a baseline that utilized the current position of the
ray without any prediction applied. An RM-ANOVA was performed to compare the angular error
of the five models at 10% intervals of task progress points. A Bonferroni correction was applied
to all post-hoc pairwise comparisons, by multiplying the (uncorrected) p-values by the number of
comparisons made [2].

5.5 Results
There were overall significant effects of model (F4, 44 = 187.1, p < .001) and progress point (F9, 99 =
132.7, p < .001) on the angular error. There was also a significant interaction effect between model
and task progress (F36, 396 = 100.9, p < .001). The results indicated that HeadKTM7 outperformed the
KTM, KTM7, and HeadKTMmodels (all at the p < .001 level) (Figure 9). Overall, HeadKTM7 provided
promising results, with an angular error of 7.3◦ at 50% of the way through the task, 4.4◦ at 70%, and
3.4◦ at 90%. This was encouraging, as it showed that both proposed enhancements could increase
the accuracy of predictions. Compared to the baseline with no prediction, HeadKTM7 improved
accuracy by 62.1% at 40% progress. However, near the end of the movement, the baseline was the
most accurate.This is consistent with prior findings [114] and suggests that adaptive techniques that
can detect when a movement is ending may be useful. It is interesting that HeadKTM outperformed
KTM7, indicating that the improvement of our technique primarily stems from using the head-
coupled data. The differences in accuracy were most pronounced at 40% progress, with angular
errors of 10.0◦ for HeadKTM7, 11.6◦ for HeadKTM, 15.0◦ for KTM7, 17.9◦ for KTM, and 26.4◦ for the
baseline. The average movement time across all trials was 731 ms, so a prediction at 40% progress
would occur 292 ms after a movement began, on average.

5.6 Summary
By modifying the KTM model to include head-coupling and consider the top-n matches, the
HeadKTM7 predictions were 44.1% and 62.1%more accurate than KTM and the baseline, respectively,
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HeadKTM7.

40% of the way through a participant’s movements (292 ms). The most important insight was that
head movements provided an earlier indication of the participant’s intent (Figure 7); however, the
head did not point directly toward the target (Figure 6) because participants only moved their head
enough to see the target in their field of view. This may explain why HeadKTM7 provided the most
improvement during the initial stages of pointing.

6 Experiment 3: Use of Gaze during Ray Pointing
Experiment 2 demonstrated the promise of utilizing head movements to improve the ray pointer
landing position during target selection. In Experiment 3, we seek to understand if leveraging
gaze data could further improve the accuracy of landing position predictions. The purpose of
this study is two-fold. First, we wanted to better understand how gaze is coordinated with head
and controller movements during VR ray pointing selection (Figure 10). Shedding light on these
coordination behaviors would aid in the development of our gaze-enhanced models, but also guide
future research efforts which aim to leverage gaze in VR environments. Second, in Section 7, we
will use the data collected from this study to test our proposed gaze-enhanced models.

6.1 Participants
Twenty-five participants with no major motor impairments and with normal vision (no glasses or
contact lenses were allowed to ensure accurate eye tracking) were recruited. Participants were 18
to 65 years old.2 Participants were compensated $30 for their time. A Randot Stereo Optical Test
was administered prior to the experiment to ensure adequate stereo vision. Informed consent was
obtained prior to the study.

6.2 Apparatus
The experiment was conducted using an HTC Vive Pro Eye HMD that had a display resolution of
2,800× 1,600 and an embedded eye tracker. The eye tracker had a reported accuracy of .5◦–1.1◦ and

2Due to unintended data storage loss, we are unable to report the specific breakdown of participant age and gender for this
study. The participant pool was made up of a range of ages, genders, and experience levels with 3D games and VR systems.
They were representative of typical North American adult computer users that would not experience challenges using VR
platforms (no visual or motor impairments).
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Fig. 10. Experiment 3 explores the coordination patterns of the CP, HP, and gaze position during VR target
selection.

Fig. 11. The study used two target layouts. (a) The reciprocal layout trial set consisted of eight trials between
two reciprocal target positions. (b) A random layout trial set consisted of 24 trials across randomly positioned
targets. The current target was rendered as a yellow sphere. The next target did not appear until the previous
target had been selected.

framerate of 120 Hz. The HMD positions and angles were updated at a rate of 90 Hz. The system ran
on a 3.7 GHz Intel Core i7-8700k desktop computer with an NVIDIA GeForce RTX2080 graphics
card and was developed in the Unity3D environment.

6.3 Task
The study used a target acquisition task. Participants were placed in a scene with a gray gradient
background and an infinite grid ground plane and were asked to select a target rendered as a yellow
sphere. The participant selected the target by using a virtual ray that was controlled by a handheld
controller. Once the target was intersected by the ray, the participant could click the trigger on the
controller and the next goal target would be displayed. If the ray did not intersect the target, the
trial would count as an error, and the participant would need to adjust the ray and click again.

The target layout was either reciprocal or random (Figure 11). The reciprocal layout involves
a planned back and forth motion, whereas with the random layout, the user must wait until the
next target is revealed before initiating their movement. For the reciprocal layout, the participant
would switch between selecting one of two targets that were placed equidistant from the center
of the participant’s viewpoint at controlled distances and angles. Participants alternated between
selecting each target 8 times. For the random layout, the target positions were pregenerated and
presented in a random order. This task represented situations where a user could not predict
where a target would appear until the trial began, which was hypothesized to influence their head
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Fig. 12. (a) The green glowing effect that indicated which direction the next target was going to appear. This
effect was used to avoid visual search behaviors when the next target fell out of the participant’s field of view.
(b) The target positions used in the study (blue) were at a fixed depth of 9 m from the participant (red dot).

and gaze coordination patterns [96]. Participants selected eight targets when this target layout
was used.

6.4 Procedure
Prior to the study, to calibrate the system, the coordinate system was reset after the participant
found a comfortable position in a chair, with the HMD in a resting state. The point between their
eyes was set as the origin, with the positive axes being left to right (X ), bottom to top (Y ), and
back to front (Z ). The eye tracker was also calibrated for each participant with a short calibration
procedure. Participants were given a 2-minute warmup to familiarize themselves with the task
and sat in the chair throughout the experiment. During initial testing, we noticed that in the
random layout, the target would sometimes fall outside the participant’s field of view, which would
cause them to engage in a visual search to find the position of the next target. To avoid visual
search behaviors, we introduced an off-screen visualization [16] using a green glowing effect that
would appear in the direction of the next target when it fell outside the participant’s field of view
(Figure 12(a)).

6.5 Design
For this study, an repeated-measures within-participant design was used with two factors, Layout
(i.e., reciprocal, random) and Amplitude (i.e., 5◦–60◦ in 5◦ increments). Each trial consisted of a start
position and end position. For the reciprocal Layout, the targets were positioned radially around
the origin opposite to each other at a fixed depth from the participant (i.e., 9 m). The movement
direction between targets ranged from 0◦ to 135◦ at 45◦ intervals. For the random Layout, targets
would appear randomly within the same bounding sphere determined by the outermost targets
in the reciprocal Layout. The amplitude between targets varied from 5◦ to 60◦ in 5◦ increments
(Figure 12(b)). The angular width of the target (i.e., the angle of the target boundaries relative to
the origin) remained fixed at 4.5◦ throughout the study.

The experiment was completed in a single session lasting about 30 minutes. Within each session,
the order of the Layout (i.e., reciprocal or random) was randomized. Participants performed 384
trials for each Layout for a total of 768 trials; however, the structure differed between Layout. For
the reciprocal Layout, there were 12 blocks of trial sets, one for each of the 12 Amplitudes, in random
order. Within each block, there was one trial set for each of the four Directions, in random order.
Within each trial set, the participant moved their cursor back and forth between the two targets 8
times (12 Amplitudes × 4 Directions × 8 repetitions = 384 trials). For the random Layout, there were
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16 trial sets, consisting of 24 trials each. Within each trial set, the targets’ positions were randomly
chosen, with each of the 12 discrete Amplitudes (5◦–60◦, at 5◦ increments) appearing twice each
(16 trial sets × 12 Amplitudes × 2 repetitions = 384 trials).

6.6 Gaze Data Processing
The eye tracking data provided timestamped (x, y, z) coordinates that represented fixations and
saccades. The vector was output directly by the eye tracker as a combination of the individual gaze
vectors from the left and right eyes pointing in the direction of the participant’s gaze. Due to noise
in the gaze data, we needed to process these data. First, we identified short gaps in the data (e.g.,
one to five consecutive samples) that had no reported position due to tracking loss or blinking
and used linear interpolation to fill them. Second, we filtered the gaze data using the 1 Euro Filter
with a minimum cutoff of 9 and a beta .7, which biased toward minimizing latency. Finally, the
resulting data were segmented into saccades and fixations using the dual threshold implementation
of the velocity threshold heuristic [6]. The start of a saccade was defined as the moment when the
velocity exceeded 130◦/s (V3 ) and the end of a saccade as the moment when the velocity dropped
below 70◦/s (V 5 ). This data processing procedure was applied to each trial to segment the data into
fixations and saccades.

6.7 Data Exclusions
Given the inherent noise in the gaze tracking data and the importance of this information for
our modeling efforts, we implemented thorough outlier removal. Data from four participants had
to be removed due to calibration errors (P1, P13) and poor gaze tracking data (P7 and P12). We
removed trials in which the target was not successfully selected on the first attempt (1,991 trials).
We also removed individual trials that were more than 3 SDs from the mean with respect to the
gaze location at the time of target selection (156 trials), the number of saccades in a single trial
(149 trials), and any trial where the gaze shifted away from the target by more than 20◦ between
samples (which represent a velocity over 1,000◦ per second [14]; 154 trials). Finally, we removed
trial completion time outliers for each participant and amplitude combination (51 trials). Overall,
1,701 (10.55%) of the trials from the 21 participants were removed, leaving a total of 14,427 trials.

6.8 Data Collection Measures
The following metrics were calculated for analysis. Some metrics relate to the overall task, some
relate to each of the three individual input modalities (controller, head, and gaze), and some relate
specifically to gaze data.

—Trial Completion Time (Overall): Calculated as the total milliseconds between the trial start
and successful selection of the goal target.

—Angular Error (Head, Controller, and Gaze): The angular distance measured in degrees between
the final directional vector and the target center, for each of the three input modalities.

—Peak Velocity (Head, Controller, and Gaze): The maximum velocity (◦/s) that each of the three
input channels reach.

—Peak Velocity Progress (Head, Controller, and Gaze): Measures when, in the trial, each input
channel reaches its peak velocity, expressed as a percentage of the total trial time.

—Number of Saccades (Gaze): The number of saccades that occurred in each trial.
—Final Saccade Progress (Gaze): Measures when the final saccade completes, expressed as a
percentage of the total trial time.
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6.9 Data Collection Results
For all dependent variables, an RM-ANOVA was performed, using the same Bonferroni correction
procedure for post-hoc pairwise comparisons as Experiment 2. To perform a statistical comparison
of dependent variables related to the gaze, controller, and head, an additional variable, Modality,
was introduced.

6.9.1 Trial Completion Time. The grand mean for trial completion time was 889 ms. The
RM-ANOVA found main effects of Layout (F1, 20 = 144.0, p < .001) and Amplitude (F11, 220 = 279.3,
p < .001). There was no interaction between Layout and Amplitude (F11, 220 = .98, p = .47). Overall,
reciprocal trials (803 ms) were faster than random trials (975 ms), and time increased with amplitude
continuously from the range of 5 (570 ms) to 60 (1,155 ms), with all pairs being significantly different
(p < .05) except for the pairs [20◦, 25◦], [25◦, 30◦], [35◦, 40◦], [50◦, 55◦], and [55◦, 60◦]. Figure 13
shows the impact of Layout and Amplitude on completion time.

6.9.2 Angular Error. When evaluating the angular error, the RM-ANOVA revealed a significant
main effect ofModality (F2, 40 = 860, p < .001) and Amplitude (F11, 200 = 193, p < .001), but not Layout
(F1, 20 = 4, p = .59). Post-hoc pairwise comparisons indicated that controller was most accurate
(M = .91◦), followed by gaze (M = 1.40◦), and head (M = 15.16◦), all at the p < .001 level. There
was also a significant interaction effect between Modality and Amplitude (F22, 440 = 103, p < .001).
What is interesting is that the angular error of gaze and controller remained constant across target
amplitudes, while the accuracy of the head varied. For larger amplitudes, the head was less accurate
during the reciprocal target layouts, indicating that the head may move less when the target is in a
predictable location. Participants tended to move their heads anywhere from within 5◦–22◦ of the
final target for reciprocal Layout, and within 14◦–17◦ for random Layout (Figure 14).

Scatterplots of the final landing positions further illustrate the angular error of each modality
(Figure 15). The CPs were densely packed within the target boundaries. Gaze positions mirrored
this, but with more divergence. The HPs diverged around the target for random Layout ; however,
for reciprocal Layout, banding suggested that the head moved in the direction of the target, like
Study 1 (Figure 6). As such, integrating gaze into HeadKTM7 may improve modeling, due to its
increased accuracy compared to head movements.
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Fig. 14. Accuracy of the head, gaze, and controller for random Layout (left) and reciprocal Layout (right).

Fig. 15. Scatterplots of the final landing positions of the head, gaze, and controller for (a) random Layout and
(b) reciprocal Layout.

6.9.3 Peak Velocity. The peak velocities are significantly impacted by Modality (F2, 40 = 871,
p < .001), and highest for eye (463◦/s), followed by controller (170◦/s) and then head (34◦/s) (all
p < .001). Peak velocities are also significantly influenced by Amplitude (F11, 220 = 728, p < .001)
(Figure 16). The values increase with angular amplitude, consistent with prior human factors
studies [14]. The Layout also had a significant effect (F1, 20 = 46.8, p < .001) and there was significant
interaction betweenModality and Layout (F2, 40 = 3.76, p < .05) and betweenModality andAmplitude
(F22, 440 = 210, p < .001).

6.9.4 Peak Velocity Progress. In terms of when the peak velocity occurred, the RM-ANOVA
found a significant main effect of Modality (F2, 40 = 69.3, p < .001), Layout (F1, 20 = 14.9, p < .001),
and Amplitude (F11, 220 = 46.7, p < .001). There was also a significant interaction between Modality
and Layout (F2, 40 = 11.68, p < .001) (Figure 17) and between Modality and Amplitude (F22, 440 =
12.41, p < .001). On average, the peak velocity is achieved first by the gaze, at 26.2% of the trial, then
by the controller, at 33.9% of the trial, and finally by the head, at 36.5% of the trial. The pairwise
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Fig. 16. The peak velocity for the head, gaze, and controller when a (left) random Layout and (right) reciprocal
Layout was used.
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Fig. 17. The peak velocity progresses for each Modality and Layout.

differences between gaze, with both head and controller, were significant (both p < .001), while the
pairwise difference between controller and head was not significant (p = .13). The finding shows
that the gaze achieves its peak velocity sooner than both the head and the controller, at roughly
one quarter of the total trial time, suggesting its potential use to provide earlier indications of final
landing position within a predictive model.

6.9.5 Number of Saccades. The average number of saccades was 1.23 (SD = .82). In the majority
of trials (71.7%) a single saccade occurred (Figure 18(a)). Both Layout (F1, 20 = 65.8, p < .001) and
Amplitude (F11, 220 = 199.5, p < .001) had a significant effect on the number of saccades, and the
interaction between Layout and Amplitude was significant (F11, 220 = 25.1, p < .001) (Figure 18(b)).
The number of saccades increases with Amplitude, a trend more prominent with random trials.

6.9.6 Final Saccade Progress. On average the final saccade ended at 37.7% (SD = 10.5%) of the
total trial time (Figure 19(a)). This result aligns with prior research on the coordination of the hand
and point of gaze during aiming [48–50]. This is additional evidence that the gaze position could be
used early, during a targeting action, to estimate a user’s intended target location. The RM-ANOVA
found that Amplitude had a significant effect on the final saccade progress (F11, 220 = 29.5, p < .001;
Figure 19(b)). The Layout did not have a significant effect (p = .26); however there was a significant
interaction between Layout and Amplitude (F11, 220 = 13.4, p < .001). For the reciprocal Layout, the
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Fig. 18. (a) Histogram of the number of saccades per trial. (b) The average number of saccades by Amplitude
and Layout.
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Fig. 19. (a) A histogram of trial progress when final saccade was completed. (b) The final saccade progress by
Layout and Amplitude.

final saccade tended to end later for small and large Amplitude values, while for the random Layout,
the final saccade tended to end later for just small Amplitude values.

6.9.7 Summary of Analysis. Overall, the analysis showed promise for using gaze as an additional
input channel to predict a ray pointer’s landing position, supplementing the controller and head
movements. The results are largely consistent with prior work, which has shown that, in general,
gaze precedes hand motions during acquisition (e.g., [50, 65, 101]), but this study provides validation
for this finding, specifically, for 3D ray pointing selection in VR. The controller still had the most
accurate landing position, but the final landing position of gaze more accurately reflected the
position of the target (avg = 1.4◦) compared to the HP (avg = 15.16◦) (Section 6.9.2). Furthermore,
gaze reached its peak velocity earlier than both the head and the controller (Section 6.9.3). This
may indicate that gaze offers an earlier signal of intended landing position, which could potentially
improve a template-based model. On average, the final saccade was completed at 37.7% of the total
trial time (Section 6.9.6), at which point it should provide a good indication of the final cursor
landing position. These results were generally consistent across both reciprocal and random target
layouts; however, with random layouts, more saccades tended to occur (Section 6.9.5). This suggests
that the accuracy of gaze-based predictive models may be reduced when the user cannot anticipate
the target location.
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(a)

(b)

Fig. 20. (a) A saccade began when the gaze velocity exceeded V3 and completed when the velocity dropped
below V 5 (Section 6.6). (b) The HybridKTM7 model (Algorithm 1) transitions from using HeadKTM7 prior to
a saccade being completed to using the gaze ray after a saccade was completed (when the gaze should be
closest to the intended target).

7 Gaze-Enhanced Models
Our data analysis from Experiment 3 indicates that integrating gaze data into the HeadKTM7 model
holds promise. We now describe our proposed gaze enhanced models and use then evaluate their
performance, in comparison to HeadKTM7.

7.1 GazeKTM7 Model
The first proposed model, GazeKTM7, utilizes the Gaze Angular (GA) velocity as a fifth input
channel for template matching. The GA is calculated by averaging the gaze vectors of the left and
right eyes. The origin of the gaze is equivalent to the HP, and thus, is not added to the template.
With this model, the cumulative scoring function (Equation (1)) is extended to include the gaze
angle score (S��), using a fifth constant weight, e (Equation (3)). All other aspects of the model are
equivalent to HeadKTM7. The same interpolation-based tuning procedure for e is used, as described
in Section 4.6:

( ()8 ) = 0(�% ()8 ) + 1(�� ()8 ) + 2(�% ()8 ) + 3(�� ()8) + 4(�� ()8 ). (3)

7.2 HybridKTM7 Model
A second proposed model, HybridKTM7, predicts the cursor landing position based on the current
location of one’s gaze (Figure 20, Algorithm 1). The rationale behind this model was that, if one’s
gaze lands close to a target prior to the cursor [108], then its absolute position could dictate the
region close to where the ray pointer would land. Gaze data could, thus, indicate the target location,
but only after a saccade is completed. Prior to a saccade, the predicted ray is based on the HeadKTM7

model, but after the saccade is completed, the predicted ray is based on the current gaze ray. Note
that in some cases, a second saccade might be needed to visually acquire a target. If HybridKTM7

detects a second saccade beginning, it reverts to the HeadKTM7 model and waits for the second
saccade to complete before using the gaze ray again.
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Fig. 21. A comparison of the four models, for (left) random target layouts and (right) reciprocal target layouts.

7.3 Modeling Results
Using the data collected from Experiment 3, we now validate these proposed gaze-enhanced models.
We compare the following four models:

(1) GazeKTM7: An extension of the HeadKTM7 model, which included the velocity of the gaze
forward vector as a fifth input channel (Section 7.1).

(2) HybridKTM7: A version of HeadKTM7 that transitioned to a prediction of the cursor landing
position based on the current location of the gaze after a saccade has occurred (Section 7.2).

(3) GazeOnly: A model that uses gaze only, based entirely on the current position of the gaze
vector, without any additional prediction applied.

(4) HeadKTM7: A baseline model that did not utilize any gaze information (Section 3). This was
found to be the best performing head-coupled model in Experiment 2.

All models were tested offline, using the data recorded during Experiment 3. For the evaluation
of the template-based models, we evaluated each participant’s recorded data against their own
templates for the random and reciprocal target layouts separately.The same interpolation procedure
from Section 4.6 was used to determine weighting values for the scoring functions in the template-
based models (a, b, c and d, and e in Equation (3)). An RM-ANOVA was performed for random
and reciprocal trials separately to compare the angular error of the four models at 10% intervals of
task progress points. A Bonferroni correction was applied to all post-hoc pairwise comparisons, by
multiplying the (uncorrected) p-values by the number of comparisons made [2]. Across all trials,
the average movement time was 889 ms, so a prediction at 40% progress would be at the 356 ms
mark, on average.

The results are illustrated in Figure 21. For both random and reciprocal trials, there were overall
significant effects of model (random: F3, 60 = 412.1, p < .001; reciprocal: F3, 60 = 33.5, p < .001) and
progress point (random: F8, 160 = 1374.6, p < .001; reciprocal: F8, 160 = 752.3, p < .001) on the angular
error. There was also a significant interaction effect between model and task progress for both
random (F24, 480 = 58.8, p < .001) and reciprocal (F24, 480 = 71.6, p < .001) trials.

When comparing just the template-based models (i.e., HeadKTM7, GazeKTM7, and HybridKTM7),
the results indicated that HybridKTM7 outperformed the baseline HeadKTM7 model and GazeKTM7

for both random and reciprocal trials (all p < .001). This indicates that HybridKTM7 would be
the best template-based predictive model. For random layouts, at 40% progress, HybridKTM7

had an angular error of 7.2◦, outperforming the baseline HeadKTM7 model (11.4◦) by 37.2%. For
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reciprocal layouts, the improvement was 29.3% (HybridKTM7: 5.2◦, HeadKTM7: 7.4◦). We also saw
that all models performed better when reciprocal target layouts were used rather than random
target layouts, especially earlier in a trial. This is likely because the target locations were more
predictable, and, thus, the participants’ movements were more uniform, which would improve the
template-based model accuracies.

We next turn our attention to the GazeOnly model. For random target layouts, GazeOnly had
the lowest overall error (p < .001) and outperformed HybridKTM7 across the entire progress of the
trials. At 40% progress, GazeOnly had an angular error of 4.1◦, while HybridKTM7 had an angular
error of 7.2◦ (42.4% improvement). HybridKTM7 had the lowest overall error for reciprocal trials
(p < .001), but this is due to poor results for GazeOnly earlier in the trial. HybridKTM7 was more
accurate earlier in the movement (at 20% and 30% progress). At 20% progress, the errors were 15.6◦
for HybridKTM7 and 25.0◦ for GazeOnly, a 37.4% improvement. A crossover occurred between the
30% and 40% progress mark, when GazeOnly had lower error from 40% to 60% progress. After 70%
progress, the two models performed comparably well, with angular errors less than 2◦ for random
and reciprocal layouts.

Overall, our modeling showed that gaze-enhanced models had observable improvements over
the baseline model. The GazeOnly model may be the best option for landing position prediction,
especially in interfaces that a user is less familiar with, which may induce behaviors similar to those
in the random layout. For interfaces that users are more familiar with, the behaviors may be closer to
those from the reciprocal layout, in which case HybridKTM7 may provide better results, especially
if predictions earlier in the motion are desirable. However, future work is needed to explore this
further, as the reciprocal task also involves preplanned back and forth muscle movements which
may not be a true representative of real-world interface usage behaviors.

8 Implications to Design and Practical Applications
In this section, we outline important considerations for real-world implementations, and then
discuss two potential use cases of endpoint prediction: selection facilitation and activation latency
reduction.

8.1 Beyond Abstract Targeting Environments
Our experiments were conducted in controlled and abstract targeting environments with a known
start time for each targeting movement (e.g., when each trial began). In a real-life application, the
start of a targeting movement would not be explicitly known. As such, it is important to discuss
techniques to determine when to begin prediction, or when a targeting motion has reached a
progress threshold, such as the 40% progress point.

When Does a New Movement Begin? Interpreting when a targeting movement begins for mid-air
input may be challenging, because sensor input is constantly updating (unlike 2D mouse input,
where there is a resting state). One approach could be to classify individual samples as being part of
a targeting state or nontargeting state, based on the gaze, head, and controller trajectories. Similar
approaches have proved effective to distinguish stroke vs. hover movements in mid-air drawing
applications [25]. This would allow our endpoint prediction models to define the beginning of a
new targeting trajectory (e.g., 0% progress) and filter out movements unrelated to targeting. The
first step toward such a goal would be conducting a data collection study for a task that combines
targeting with other nontargeting related actions. This training data could then be used to develop
a binary classifier.

When to Start Predicting? Even if the beginning of a targeting movement could be identified (as
per above), the percent progress toward the endpoint would still be unknown. In Experiment 3,
mean targeting times ranged from 570 ms (Theta = 5◦) to 1,155 ms (Theta = 60◦), meaning the 40%
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Fig. 22. Comparing the angular error of HybridKTM7 at 40% progress (known only after the trial completes)
and at the progress point calculated by multiplying the time at which peak velocity occurs (which can be
detected during the movement) by 1.18.

progress mark could range from 228 ms and 462 ms. If predictions were applied too early, then they
may not meet the desired accuracy level, whereas if predictions were applied too late, the benefit
of endpoint prediction may be lost. One approach to address this would be to estimate pointing
progress based on the kinematics of the velocity profiles [77]. In particular, our analysis of peak
velocities (Figure 17) revealed that both the head and controller velocities tended to peak at around
the 35% progress mark.

The validate this concept, we conducted a follow-up analysis based on the controller peak
velocity. We used the controller velocity, as it had a smaller level of variation in its mean progress
point (33.9%). Once the controller peak velocity occurs, the 40% progress mark can be estimated by
multiplying the time at which it occurs by 1.18 (40.0/33.9). For example, if the controller velocity
peaks at 300 ms, we assume 40% will be reached at 354 ms. We used this method to calculate the
angular error of our top performing template-based model (HybridKTM7) (Figure 22). For both
random and reciprocal trials, the angular errors are comparable to those produced by taking angular
errors at the 40% progress point, and the RM-ANOVA revealed no statistical difference (p = .51). As
such, this may be a feasible method to determine when to start predicting in real-world scenarios,
when the full trial time is not already known. However, it is important to note that the progress
point at which peak velocity occurs (e.g., the 1.18 multiplier we used) may be dependent on the
device, task, user, or application. As such, initial data gathering may be necessary before such
real-time predictions can be made.

8.2 Use Case: Selection Facilitation Techniques
An exciting line of future research is to combine selection facilitation techniques [44, 63] with our
endpoint prediction models. This could potentially improve selection of small and distant targets,
which is an inherent challenge of ray pointing [69]. Indeed, one of the core promises of endpoint
prediction more broadly, is to facilitate selection:

“If we could create a means of knowing an endpoint in advance of its delivery by a mouse-click,
we could increase the efficiency of mouse pointing, perhaps considerably, with techniques
such as target expansion [73, 95] or gravity wells [47]. Such is the goal of endpoint prediction,
an attempt to predict the future when pointing.” [87, p. 743]

For example, techniques that dynamically adapt the CD ratio [23] could benefit from early
prediction. As the user initially moves the cursor, such predictions could enable the cursor to
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accelerate toward the predicted region and decelerate when it arrives. This type of facilitation may
be particularly suitable for HybridKTM7, as it performs well even at earlier stages of movement
(e.g., 40%), In this case, the predicted landing position would not need to be precisely located at
the intended target, as there would be benefit from the cursor accelerating toward the general
target region. The user could refine the position of the cursor toward the goal region as the motion
continues during closed-loop corrective movements [75]. One important consideration for such a
technique is how the dynamic CD gain would impact the user’s movements. Dynamically adjusting
the CD gain in unpredictable ways could hinder, rather than assist, overall performance. We would
argue that cursor acceleration, a default in most mouse-based systems today [29], has shown that
dynamically changing CD gains can be beneficial, even if the actual mapping is not well understood
by the end-users. This would be an interesting topic for future studies.

Alternatively, target snapping or cursor bending (e.g., [44, 86, 102, 106]) could benefit from
early predictions—instead of just snapping to the closest target to the cursor, the technique could
snap to the closest target in the predicted region. This could support faster access to targets when
predictions are made during the initial stages of the movement. Another technique which could
leverage endpoint prediction is target expansion, where knowing which target to expand is one
of the main challenges [74]. Prior work has shown that even if expansion occurs at 90% progress,
target expansion can improve selection [73]. As such, it is reasonable to believe a prediction at 40%
progress could certainly improve the selection process.

If the target layout is known, probability distributions could be generated across the targets
[114], and any facilitation technique could be disabled if the probability does not reach a threshold
value. Future studies should be conducted to understand the performance of such techniques as
a function of the target layout. It is also vital to understand how each of these techniques would
behave in instances when the prediction is wrong. Care would need to be taken in the design of
such techniques to ensure users could easily ignore or override incorrect predictions.

It is also important to note that any facilitation technique is likely to change the user’s behaviors
due to the target acquisition perception and action loop [75]. In particular, there is a risk that
changing the mechanics of the cursor behavior in the midst of a targeting action could negatively
influence a user’s pointing action by breaking the continuous nature of cursor pointing. We would
hypothesize the best performing facilitation techniques would be those that maintain continuous
and predictable movements (e.g., bubble cursor [44, 71]; cursor acceleration [23]) rather than
techniques like target jumping which could introduce unexpected or unpredictable movements.

8.3 Use Case: Reducing Activation Latency
Another application of endpoint prediction is to reduce perceived latency (e.g., activation delay) of
interaction [110] or of computationally heavy operations. This has been a long sought after goal
in operating systems to improve user experience (e.g., Microsoft’s Superfetch [55]). This could be
particularly beneficial in VR systems where executed commands could perform computationally
heavy operations. If we take the average selection time from Experiment 3 (889 ms), beginning
a predicted action at 40% progress would decrease latency by 533 ms (.6× 889 ms), which could
substantially improve the perceived system responsiveness (prior work has shown latencies of
even 100 ms are perceivable to the user and can be detrimental to user experience [7, 59, 83]).

9 Discussion and Future Work
We now summarize our main findings, list avenues for future research, and discuss our work’s
limitations.
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9.1 Summary of Findings and Recommendations
The presented models show promise for VR ray pointer predictions due to the introduction of
multimodal input channels in the KTM model. The HeadKTM7 model, which incorporated HP
and CP angles, demonstrated the initial validation of this concept, while the gaze-enabled models
showed additional accuracy benefits. Below we highlight the critical findings across our three
studies and provide recommendations.

In Experiment 1, we found that head movements, while less accurate than controller movements
(Figure 6), may provide a better signal of the intended target in the early stages of movement.
Indeed, modeling from Experiment 1 showed that relying solely on HA for endpoint prediction was
better than relying solely on the CA (Figure 8). In Experiment 2, we validated that incorporating
HA into the template matching model improved prediction accuracies, with the HeadKTM7 model
performing best overall. As such, our recommendation is to use HeadKTM7 for target prediction
when gaze tracking is not available.

In Experiment 3, we investigated the impact of incorporating gaze into the endpoint prediction
model. We found that gaze reached its peak velocity earlier than both the head and the controller.
The results of the modeling showed that both proposed gaze-enhanced models (GazeKTM7 and
HybridKTM7) outperformed HeadKTM7. As such, we recommend that if gaze tracking is available,
then a gaze-enhanced model should be used for prediction. Furthermore, we found that a simple
GazeOnly model may be the best option, although there were situations (e.g., early during reciprocal
layouts) where the GazeOnly performed poorly, and HybridKTM7 model performed best (Figure 21).
Future work in real-world environments should be conducted to better understand the tradeoffs
between these two techniques.

9.2 Generalizations to Other Platforms
Although developed and evaluated within a VR environment, the models should generalize to 2D
platforms as well. Targets were shown in 3D space, but the task could be decomposed into the
2D angular movements of the ray pointer. It would be interesting to use the model for distant
pointing on large, high-resolution displays, where 2D angular ray pointing is also used. Within
this context, the present work can be seen as building on prior literature, which has coupled head
and hand movements to divide large display pointing into coarse and precise modes [80]. Similarly,
our models could be useful in traditional desktop environments [66, 87, 114], or mobile devices,
where the onboard camera could be used for head and gaze tracking [67].

9.3 Personalization of Template Libraries
One characteristic of the models we developed is that they are personalized to individual users.
An advantage of model personalization is that it can be tuned to each user; a drawback is that
training data is needed. One solution is to start a new user with a generic template library, and
slowly replace that library with the user’s own data, as movements are collected. There may also
be classes of users with similar behaviors, who could share predetermined template libraries. For
example, users could be classified based on the extent with which they tend to move their head or
on gaze behavior patterns [101]. Future research should be conducted to explore these topics.

9.4 Complexity
An important factor of our model is the performance it would achieve in a real-time environment.
The real-time performance would be dependent on the number of templates that are in a user’s
template library. Experiment 2 used roughly 2,000 templates per participant, whereas fewer than
400 were used for Experiment 3. We have conducted an initial demonstration of the performance
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of the HeadKTM7 model in real time with a sample two-player VR shooting game [51]. The game
included a “power-up” that enabled target snapping based on the model predictions. The game
displayed both the actual ray cursor and a secondary ray cursor that snapped to the predicted
targets. That way, if the prediction was incorrect, it could be ignored, and the user could still control
their original ray cursor in a continuous manner. The implementation involved approximately
2,000 templates. The model was able to run in real-time, with minimal optimization, no perceivable
impact on performance, and at an input rate of 90 Hz. With each incoming input event frame, a
prediction occurred in just under 11 ms.

9.5 Model Considerations
Our work is one of the first efforts to adapt endpoint prediction techniques to VR ray pointing.
We were motivated to leverage the KTM model for our work, given its promising results in the 2D
desktop pointing literature [87]. However, as reviewed in Section 2.2, there are many alternative
models that have been previously used for endpoint prediction. Below we contrast our algorithm
with alternative endpoint prediction models, discuss how such previous models could be adapted
to VR ray pointing, and contrast their relative strengths and applicable scenarios.

Extrapolation Using Motion Kinematics. Techniques that use basic linear regression (e.g., doubling
distance of movement at peak velocity [85]) or extrapolation based on motion kinematics (e.g.,
minimum jerk law [66]) have the benefit of being simple to implement, and run efficiently, and
could require less training data then the KTM approach which we used. There may be future
opportunities to adapt such techniques to ray pointing using multimodal input channels. For
example, independent extrapolation models could be developed to map cursor, head, and gaze
velocities to target distance. A weighted average of these three distance calculations could then
determine the final endpoint estimate. However, regression-based extrapolation models have been
shown to be less accurate than KTM [87], so we would hypothesize that such models should only
be considered if runtime efficiency or implementation cost was being prioritized.
OFC Models. Models based on OFC have received recent attention in the HCI literature, and

have shown to be able to predict motion trajectories, given known endpoints/targets, for both 2D
pointing [39] and 3D mid-air movements [12]. While these techniques show great promise, they
are not designed to predict the user’s goal state (e.g., the target location). Conversely, they are used
to predict trajectories given an intended goal. As such, these models may be useful in obtaining a
better understanding and explanation of observed behaviors, but they are not directly applicable
for endpoint prediction.

Inverse Optimal Control Methods. In contrast, inverse optimal control models can be used to predict
the user objective based on behavioral observations. More specifically, given a pointing trajectory,
they could be used to infer an endpoint. Ziebart et al. [114] used this principle to predict the
desired target of a partial pointing motion for desktop mouse pointing. Results indicated that when
40–60% of the pointing motion remained, the inverse optimal control method outperformed the
extrapolationmethods described above. However, the technique requires a higher level of complexity
for implementation, especially if it were to be adapted for a 3D ray pointing task. Furthermore, the
technique by Ziebart et al. relies on the preexisting knowledge of the potential target locations. As
such, the technique may be suitable for ray pointer prediction when implementation cost is not a
concern, and the potential target locations are known. Models based on inverse optimal control
also have the advantage that they can predict entire motion trajectories, not just the final endpoint.
This could be useful when full trajectory data may be needed, such as for gesture-based input,
or predicting tunneling or steering movements [4]. Adapting such techniques to 3D ray pointing
was beyond the scope of our own research. Future research should investigate the applicability of
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inverse optimal control models for ray pointing prediction in VR, comparing its performance to
the benchmark results which we have established.

9.6 Limitations
Our work tested models with data that were collected in controlled lab experiments, in abstract
target environments. While this is standard practice for HCI research to improve internal validity,
it also gives rise to important limitations related to external validity. For example, Study 3 revealed
that changing the task (between reciprocal and random) could impact the performance of the
models. Further work is needed to understand how the results would generalize to actual interface
usage. Our hypothesis is that the random target layout should be a good approximation of real-
world behaviors, but further validation is needed. Another aspect of VR pointing, that was not
addressed, is that multiple targets can be located along the same projected path at varying depths,
thereby requiring disambiguation. The proposed models only predict the location of the ray, not the
depth of the target. Future work should explore additional input channels, such as gaze [108], to
predict object depth and extend the model to truly 3D predictions. Selection refinement techniques
[45, 63] could also be used when multiple targets fall along the ray. Another simplification was
the lack of distractor targets. The visual presence of distractors could influence a user’s behavior,
which could in turn interfere with the model. Incorporating or filtering out such behaviors would
be an interesting topic for future studies. Furthermore, our study removed visual search from the
task requirement. Future work could attempt to infer when a user transitions from visual search to
target acquisition, to define the beginning of a new candidate movement.

In addition, the controlled studies of our work assumed a continuous path to the goal target
which may not always be present in a real-world application. If a user were to change their intended
target mid-movement, the template-based models would likely break down. For example, if a user
was performing a 3D sketch in VR, their intention regarding where to begin their next stroke may
change at any time during a movement. As such, their movement would no longer be comparable
to a library of templates which consist of single continuous movements. Our approach applies the
predicted angular distance to the current angle of movement, defined by the angle between the
current controller forward vector and its initial forward vector. An alternative approach would be
to define the current angle of movement based on a window of recent samples; however, samples
would need to be filtered to account for noise in the spatial data. Beyond this, a classifier may be
needed to detect when such intent changes occur, at which point any attempts for prediction are
abandoned. Alternatively, the template matching procedure could be reinitialized from the exact
point at which the intent changes, if it could be identified (perhaps at an inflection point in the
velocity profile).

In relation to the parameter values of our model (e.g., a–e in Equation (3)), we used a straight-
forward interpolation procedure to weigh the relative importance of each velocity profile. Future
work could explore more advanced optimization techniques, which could validate the range of
values we used and their relative ranking.

In Experiment 3, the gaze data had calibration errors and noise, resulting in some trials being
removed from the analysis. As we expect future headsets to provide more reliable gaze data, we
took a liberal approach to removing outliers, so the data were as clean as possible, and thus,
best simulated the performance of the models when gaze tracking improves. Future work should
consider adaptive techniques to transition between models based on the reliability of incoming
data [99].

In all three studies, we used angular divergence from the goal target as the metric for accuracy.
We chose this metric as it provides a single representative metric that is analogous to pixel distance
used in 2D endpoint prediction studies. However, the model predicts both a Cartesian position of
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the controller and its forward vector angle. By using a single metric, we do lose some information
about the root cause of any imprecision. Even if the angle is perfectly calculated, our metric of
angular error could be nonzero due to inaccuracy in the position prediction. More advanced metrics
of error could be considered in the future, such as looking at each of the individual components of
the predicted ray position and angle separately. Alternatively, the Cartesian distance between the
predicted ray and the actual endpoint could be used; however, such a metric would be sensitive to
the distance of the target from the user (the further the target is, the larger the distance would be).

10 Conclusion
This work demonstrated that multimodal data can be used to improve predictions of ray pointer
landing positions. Specifically, we found that it is beneficial to integrate the movements of both
the head and gaze patterns into the predictive models. We first showed that a model that utilized
head movements (i.e., HeadKTM7) provided an angular error of 10.0◦ at 40% of the way through
a movement, representing an increased prediction accuracy by 44.1% compared to the existing
2D KTM model. We then showed that models that incorporate gaze information (i.e., GazeKTM7,
HybridKTM7, and GazeOnly) can further enhance the predictions. In particular, the HybridKTM7

model provided additional improvements with angular errors of 5.2◦ for reciprocal target layouts and
7.2◦ for random target layouts at 40% progress in comparison to the HeadKTM7 model. Furthermore,
we found that simply using gaze position can be less accurate early in a movement, but performs
best overall at 40% progress, with average angular errors of 4.1◦ for random target layouts and 3.8◦
for reciprocal target layouts. Our hope is that our findings related to pointer prediction in VR will
open the door for future enhancements to 3D user experiences.
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